Progress in CERES Clear-sky Aerosol Optical Thickness Dependent Shortwave ADM over Ocean

Lusheng Liang¹, Wenying Su², Zachary Eitzen¹, Joseph Corbett¹

¹ SSAI, ² LARC

Oct 24, 2012

radiance to flux: clear-sky SW ADM over ocean

- 1. Sort measured radiances into angular and wind speed bins $(w; \theta_0, \theta, \varphi)$ and calculate mean radiances;
- Calculate mean flux by integrating the mean radiances over all θ and φ;
- 3. Define anisotropic factor;
- 4. Convert measured radiances to fluxes;

$$F = \frac{\pi I_o(w; \theta_0, \theta, \varphi)}{R(w; \theta_0, \theta, \varphi)}$$

Aerosol in Ed.2 Clear-sky ADM over Ocean

- AOD is not directly accounted for in Ed.2 ADM;
- It is implicitly accounted for by a theoretical scale factor when radiances are converted to fluxes (Loeb et al., 2005).

$$F = \frac{\pi I_O}{R \left(\frac{R_{I_O}^{th}}{R_{\hat{I}}^{th}}\right)}$$

- R is the anisotropic factor for converting \hat{I} at $(w, \theta_0, \theta$ and $\phi)$ to F;
- $R_{\hat{I}}^{\it th}$ is the theoretical anisotropic factor for \hat{I} ;
- ullet $R_{I_0}^{\it th}$ is the theoretical anisotropic factor for I_0

How to quantify the performance of an ADM?

RMS of normalized radiance differences between ADM-prediction and observation

$$RMS = \sqrt{\frac{1}{n} \sum \left(\frac{\hat{I}^{i}}{\left\langle \hat{I} \right\rangle} - \frac{I_{O}^{i}}{\left\langle I_{O} \right\rangle} \right)^{2}}$$

- \hat{I}^i is the radiance value of ADM at (w, θ_0 , θ and ϕ),
- I_a^i is the radiance value of the theoretical model at (w, θ_0, θ) and ϕ ,
- $\langle \ \rangle$ is the grid mean.

Where to improve?

RMS is a function of AOD and aerosol type

1: AOD-classified ADM

2: AOD-and-type classified ADM (two-model-minimal approach with MODIS bands 1 and 2)

3: AOD-and-type classified ADM (AOD-fine-mode-fraction approach with MODIS bands 1 and 2)

1: AOD-classified ADM

AOD retrieval - comparison with MODIS

CERES

MODIS

AOD-classified ADM -- OPAC maritime-tropic model

Ed.2 ADM RMS

New ADM RMS

AOD-classified ADM -- OPAC maritime-tropic model

1: AOD-classified ADM

2: AOD-and-type-classified ADM (two-model-minimal-retrieval-error approach with MODIS bands 1 and 2)

3: AOD-and-type-classified ADM (AOD-fine-mode-fraction approach with MODIS bands 1 and 2)

two-model-minimal-retrieval-error approach

Compare two retrieval errors

Coarse-mode-like aerosols

33-66% AOD bins 66-100% AOD bins 0-33% AOD bins

33-66% **AOD** bins

66-100% AOD bins

Aerosol classification

percentage of coarse-mode-like aerosols (OPAC dust-urban model)

Aerosol classification

percentage of coarse-mode-like aerosols (MODIS 1st-9th model)

(OPAC dust-urban model, two-model-minimal- retrieval-error approach)

Ed.2 ADM RMS

New ADM RMS

(OPAC dust-urban model, two-model-minimal- retrieval-error approach)

(MODIS 1st-9th model, two-model-minimal-retrieval-error approach)

Ed.2 ADM RMS

New ADM RMS

(MODIS 1st-9th model, two-model-minimal-retrieval-error approach)

1: AOD-classified ADM

2: AOD-and-type-classified ADM (two-model-minimal-retrieval-error approach with MODIS bands 1 and 2)

3: AOD-and-type-classified ADM (AOD-fine-mode-fraction approach with MODIS bands 1 and 2)

Aerosol and fine-mode fraction retrieval

Aerosol and fine-mode fraction retrieval

(OPAC dust-urban model, AOD-and-fine-mode-fraction approach)

Ed.2 ADM RMS

New ADM RMS

(OPAC dust-urban model, AOD-and-fine-mode-fraction approach)

(MODIS 1st-9th model, AOD-and-fine-mode-fraction approach)

Ed.2 ADM RMS

New ADM RMS

(MODIS 1st-9th model, AOD-and-fine-mode-fraction approach)

Summary

ADM		Ed.2 ADM RMS (%)	ΔRMS (%)	$\Delta F(w/m^2)$
AOD-classified	Three AOD-percentile bins	10.55	-2.00	0.03
AOD-and-type-classified (two-model-minimal- retrieval-error approach)	OPAC dust-urban model	10.55	-2.31	-0.09
	MODIS 1st-9th model	10.55	-2.09	-0.04
AOD-and-type-classified (AOD-and-fine-mode- fraction approach)	OPAC dust-urban model	10.55	-1.86	-0.37
	MODIS 1st-9th model	10.55	-1.83	-0.09

- The performance of AOD-classification ADM is nearly as good as the AOD-and-type-classified ADMs;
- As the performance of AOD-and-type-classified ADM, OPAC dust-urban model combination is better than MODIS 1st-9th model combination.

Future work

- The ADM performance with AOD-and-fine-modefraction approach could be better with a different fine-mode-fraction stratification.
- The ADM performance can be potentially improved with different MODIS aerosol model combinations.
- Examine ADM performances with Ed.4 cloud product and MODIS band 1-6 radiances.